Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
FASEB J ; 38(7): e23597, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581235

RESUMO

Sepsis is a life-threatening condition that occurs when the body responds to an infection but subsequently triggers widespread inflammation and impaired blood flow. These pathologic responses can rapidly cause multiple organ dysfunction or failure either one by one or simultaneously. The fundamental common mechanisms involved in sepsis-induced multiple organ dysfunction remain unclear. Here, employing quantitative global and phosphoproteomics, we examine the liver's temporal proteome and phosphoproteome changes after moderate sepsis induced by cecum ligation and puncture. In total, 4593 global proteins and 1186 phosphoproteins according to 3275 phosphosites were identified. To characterize the liver-kidney comorbidity after sepsis, we developed a mathematical model and performed cross-analyses of liver and kidney proteome data obtained from the same set of mice. Beyond immune response, we showed the commonly disturbed pathways and key regulators of the liver-kidney comorbidity are linked to energy metabolism and consumption. Our data provide open resources to understand the communication between the liver and kidney as they work to fight infection and maintain homeostasis.


Assuntos
Proteoma , Sepse , Camundongos , Animais , Insuficiência de Múltiplos Órgãos/complicações , Insuficiência de Múltiplos Órgãos/patologia , Fígado/metabolismo , Rim/metabolismo , Sepse/metabolismo , Modelos Animais de Doenças
2.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497929

RESUMO

BACKGROUND: Liver cancer is one of the most lethal malignancies for humans. The treatment options for advanced-stage liver cancer remain limited. A new treatment is urgently needed to reduce the mortality of the disease. METHODS: In this report, we developed a technology for mutation site insertion of a suicide gene (herpes simplex virus type 1- thymidine kinase) based on type II CRISPR RNA-guided endonuclease Cas9-mediated genome editing to treat liver cancers. RESULTS: We applied the strategy to 3 different mutations: S45P mutation of catenin beta 1, chromosome breakpoint of solute carrier family 45 member 2-alpha-methylacyl-CoA racemase gene fusion, and V235G mutation of SAFB-like transcription modulator. The results showed that the herpes simplex virus type 1-thymidine kinase insertion rate at the S45P mutation site of catenin beta 1 reached 77.8%, while the insertion rates at the breakpoint of solute carrier family 45 member 2 - alpha-methylacyl-CoA racemase gene fusion were 95.1%-98.7%, and the insertion at V235G of SAFB-like transcription modulator was 51.4%. When these targeting reagents were applied to treat mouse spontaneous liver cancer induced by catenin beta 1S45P or solute carrier family 45 member 2-alpha-methylacyl-CoA racemase, the mice experienced reduced tumor burden and increased survival rate. Similar results were also obtained for the xenografted liver cancer model: Significant reduction of tumor volume, reduction of metastasis rate, and improved survival were found in mice treated with the targeting reagent, in comparison with the control-treated groups. CONCLUSIONS: Our studies suggested that mutation targeting may hold promise as a versatile and effective approach to treating liver cancers.


Assuntos
Herpesvirus Humano 1 , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Timidina Quinase/genética , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Cateninas , Mutação/genética
3.
Am J Pathol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537933

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies. Early diagnosis of HCC is crucial in reducing the risk for mortality. This study analyzed a panel of nine fusion transcripts in serum samples from 61 HCC patients and 75 patients with non-HCC conditions, using real-time quantitative RT-PCR. Seven of the nine fusions were frequently detected in HCC patients: MAN2A1-FER (100%), SLC45A2-AMACR (62.3%), ZMPSTE24-ZMYM4 (62.3%), PTEN-NOLC1 (57.4%), CCNH-C5orf30 (55.7%), STAMBPL1-FAS (26.2%), and PCMTD1-SNTG1 (16.4%). Machine-learning models were constructed based on serum fusion-gene levels to predict HCC in the training cohort, using the leave-one-out cross-validation approach. One machine-learning model, called the four fusion genes logistic regression model (MAN2A1-FER≤40, CCNH-C5orf30≤38, SLC45A2-AMACR≤41, and PTEN-NOLC1≤40), produced accuracies of 91.5% and 83.3% in the training and testing cohorts, respectively. When serum α-fetal protein level was incorporated into the machine-learning model, a two fusion gene (MAN2A1-FER≤40, CCNH-C5orf30≤38) + α-fetal protein logistic regression model was found to generate an accuracy of 94.8% in the training cohort. The same model generated 95% accuracy in both the testing and combined cohorts. Cancer treatment was associated with reduced levels of most of the serum fusion transcripts. Serum fusion-gene machine-learning models may serve as important tools in screening for HCC and in monitoring the impact of HCC treatment.

4.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206124

RESUMO

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPSeq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.


Assuntos
Células Artificiais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Isoformas de Proteínas/genética , Mamíferos
5.
Am J Physiol Cell Physiol ; 326(3): C843-C849, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223929

RESUMO

The phosphodiesterase enzymes mediate calcium-phosphate deposition in various tissues, although which enzymes are active in bone mineralization is unclear. Using gene array analysis, we found that a member of ecto-nucleotide pyrophosphatase/phosphodiesterase family, ENPP2, was strongly down-regulated with age in stromal stem cells that produce osteoblasts and make bone. This is in keeping with reduced bone formation in older animals. Thus, we hypothesized that ENPP2 is, at least in part, an early mediator of bone formation and thus may reflect reduced bone formation with age. Since ENPP2 has not previously been shown to have a role in osteoblast differentiation, we studied its effect on bone differentiation from stromal stem cells, verified by flow cytometry for stem cell antigens. In these remarkably uniform osteoblast precursors, we did transfection with ENPP2 DsiRNA, scrambled DsiRNA, or no transfection to make cells with normal or greatly reduced ENPP2 and analyzed osteoblast differentiation and mineralization. Osteoblast differentiation down-regulation was shown by alizarin red binding, silver staining, and alkaline phosphatase activity. Differences were confirmed by real-time PCR for alkaline phosphatase (ALPL), osteocalcin (BGLAP), and ENPP2 and by Western Blot for Enpp2. These were decreased, ∼50%, in osteoblasts transfected with ENPP2 DsiRNA compared with cells transfected with a scrambled DsiRNA or not transfected (control) cells. This finding is the first evidence for the role of ENPP2 in osteoblast differentiation and mineralization.NEW & NOTEWORTHY We report the discovery that the ecto-nucleotide pyrophosphatase/phosphodiesterase, ENPP2, is an important regulator of early differentiation of bone-forming osteoblasts.


Assuntos
Calcinose , Osteogênese , Pirofosfatases , Animais , Fosfatase Alcalina/genética , Diferenciação Celular , Diester Fosfórico Hidrolases/genética
6.
Heliyon ; 10(1): e23561, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187339

RESUMO

Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.

7.
Hepatol Commun ; 7(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889540

RESUMO

BACKGROUND: The liver is the only organ with the ability to regenerate following surgical or toxicant insults, and partial hepatectomy serves as an experimental model of liver regeneration (LR). Dynamic changes in gene expression occur from the periportal to pericentral regions of the liver following partial hepatectomy; thus, spatial transcriptomics, combined with a novel computational pipeline (ADViSOR [Analytic Dynamic Visual Spatial Omics Representation]), was employed to gain insights into the spatiotemporal molecular underpinnings of LR. METHODS: ADViSOR, comprising Time-Interval Principal Component Analysis and sliding dynamic hypergraphs, was applied to spatial transcriptomics data on 100 genes assayed serially through LR, including key components of the Wnt/ß-catenin pathway at critical timepoints after partial hepatectomy. RESULTS: This computational pipeline identified key functional modules demonstrating cell signaling and cell-cell interactions, inferring shared regulatory mechanisms. Specifically, ADViSOR analysis suggested that macrophage-mediated inflammation is a critical component of early LR and confirmed prior studies showing that Ccnd1, a hepatocyte proliferative gene, is regulated by the Wnt/ß-catenin pathway. These findings were subsequently validated through protein localization, which provided further confirmation and novel insights into the spatiotemporal changes in the Wnt/ß-catenin pathway during LR. CONCLUSIONS: Thus, ADViSOR may yield novel insights in other complex, spatiotemporal contexts.


Assuntos
Hiperplasia Nodular Focal do Fígado , Regeneração Hepática , Humanos , Regeneração Hepática/genética , beta Catenina/genética , beta Catenina/metabolismo , Redes Reguladoras de Genes/genética , Via de Sinalização Wnt/genética
8.
Sci Transl Med ; 15(715): eade3157, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37756381

RESUMO

Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , NF-kappa B/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Hepatócitos/metabolismo , Fibrose , Macrófagos/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
9.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37751293

RESUMO

Calponin 2 (CNN2) is a prominent actin stabilizer. It regulates fatty acid oxidation (FAO) by interacting with estrogen receptor 2 (ESR2) to determine kidney fibrosis. However, whether CNN2 is actively involved in acute kidney injury (AKI) remains unclear. Here, we report that CNN2 was induced in human and animal kidneys after AKI. Knockdown of CNN2 preserved kidney function, mitigated tubular cell death and inflammation, and promoted cell proliferation. Distinct from kidney fibrosis, proteomics showed that the key elements in the FAO pathway had few changes during AKI, but we identified that 3-hydroxymethylglutaryl-CoA synthase 2 (Hmgcs2), a rate-limiting enzyme of endogenous ketogenesis that promotes cell self-renewal, was markedly increased in CNN2-knockdown kidneys. The production of ketone body ß-hydroxybutyrate and ATP was increased in CNN2-knockdown mice. Mechanistically, CNN2 interacted with ESR2 to negatively regulate the activities of mitochondrial sirtuin 5. Activated sirtuin 5 subsequently desuccinylated Hmgcs2 to produce energy for mitigating AKI. Understanding CNN2-mediated discrete fine-tuning of protein posttranslational modification is critical to optimize organ performance after AKI.


Assuntos
Injúria Renal Aguda , Sirtuínas , Animais , Humanos , Camundongos , Injúria Renal Aguda/metabolismo , Fibrose , Corpos Cetônicos
10.
Cell Mol Gastroenterol Hepatol ; 16(6): 895-921, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37579970

RESUMO

BACKGROUND & AIMS: ß-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of ß-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. METHODS: To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. RESULTS: We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59-treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. CONCLUSIONS: Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B-dependent inflammatory axis, reducing cholestatic-induced injury.


Assuntos
Colestase , Via de Sinalização Wnt , Masculino , Animais , Camundongos , beta Catenina , NF-kappa B , Ácidos e Sais Biliares
11.
Hepatol Commun ; 7(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37556373

RESUMO

BACKGROUND: We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity. METHODS: We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET). We evaluated these mice using immunohistochemistry, serum biochemistry, bile acid profiling, and RNA sequencing. RESULTS: DKO mice were embryonic lethal, but their livers were similar to YAPKO, suggesting an extrahepatic cause of death. Male YAPKO TAZHET mice were also embryonic lethal, with insufficient samples to determine the cause. However, YAPKO TAZHET females survived and were phenotypically similar to YAPKO mice, with increased bile acid hydrophilicity and similar global gene expression adaptations but worsened the hepatocellular injury. TAZ heterozygosity in YAPKO impacted the expression of canonical YAP targets Ctgf and Cyr61, and we found changes in pathways regulating cell division and inflammatory signaling correlating with an increase in hepatocyte cell death, cell cycling, and macrophage recruitment. CONCLUSIONS: YAP loss (with or without TAZ loss) aborts biliary development. YAP and TAZ play a codependent critical role in foregut endoderm development outside the liver, but they are not essential for hepatocyte development. TAZ heterozygosity in YAPKO livers increased cell cycling and inflammatory signaling in the setting of chronic injury, highlighting genes that are especially sensitive to TAZ regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Colestase , Neoplasias Hepáticas , Proteínas de Sinalização YAP , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endoderma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Transativadores/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/genética , Feminino
12.
Am J Physiol Cell Physiol ; 325(3): C613-C622, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37519232

RESUMO

We studied osteoblast bone mineral transport and matrix proteins as a function of age. In isolated bone marrow cells from long bones of young (3 or 4 mo) and old (18 or 19 mo) mice, age correlated with reduced mRNA of mineral transport proteins: alkaline phosphatase (ALP), ankylosis (ANK), the Cl-/H+ exchanger ClC3, and matrix proteins collagen 1 (Col1) and osteocalcin (BGLAP). Some proteins, including the neutral phosphate transporter2 (NPT2), were not reduced. These are predominately osteoblast proteins, but in mixed cell populations. Remarkably, in osteoblasts differentiated from preparations of stromal stem cells (SSCs) made from bone marrow cells in young and old mice, differentiated in vitro on perforated polyethylene terephthalate membranes, mRNA confirmed decreased expression with age for most transport-related and bone matrix proteins. Additional mRNAs in osteoblasts in vitro included ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), unchanged, and ENPP2, reduced with age. Decrease with age in ALP activity and protein by Western blot was also significant. Transport protein findings correlated with micro-computed tomography of lumbar vertebra, showing that trabecular bone of old mice is osteopenic relative to young mice, consistent with other studies. Pathway analysis of osteoblasts differentiated in vitro showed that cells from old animals had reduced Erk1/2 phosphorylation and decreased suppressor of mothers against decapentaplegic 2 (Smad2) mRNA, consistent with TGFß pathway, and reduced ß-catenin mRNA, consistent with WNT pathway regulation. Our results show that decline in bone density with age reflects selective changes, resulting effectively in a phenotype modification. Reduction of matrix and mineral transport protein expression with age is regulated by multiple signaling pathways.NEW & NOTEWORTHY This work for the first time showed that specific enzymes in bone mineral transport, and matrix synthesis proteins, in the epithelial-like bone-forming cell layer are downregulated with aging. Results were compared using cells extracted from long bones of young and old mice, or in essentially uniform osteoblasts differentiated from stromal stem cells in vitro. The age effect showed memory in the stromal stem cells, a remarkable finding.


Assuntos
Matriz Óssea , Osteoblastos , Camundongos , Animais , Matriz Óssea/metabolismo , Microtomografia por Raio-X , Osteoblastos/metabolismo , Diferenciação Celular , Via de Sinalização Wnt , Minerais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte/metabolismo , Células-Tronco/metabolismo , Células Cultivadas
13.
Cell Rep ; 42(7): 112733, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421629

RESUMO

Variants of the RNA-editing enzyme ADAR1 cause Aicardi-Goutières syndrome (AGS), in which severe inflammation occurs in the brain due to innate immune activation. Here, we analyze the RNA-editing status and innate immune activation in an AGS mouse model that carries the Adar P195A mutation in the N terminus of the ADAR1 p150 isoform, the equivalent of the P193A human Zα variant causal for disease. This mutation alone can cause interferon-stimulated gene (ISG) expression in the brain, especially in the periventricular areas, reflecting the pathologic feature of AGS. However, in these mice, ISG expression does not correlate with an overall decrease in RNA editing. Rather, the enhanced ISG expression in the brain due to the P195A mutant is dose dependent. Our findings indicate that ADAR1 can regulate innate immune responses through Z-RNA binding without changing overall RNA editing.


Assuntos
Edição de RNA , RNA , Humanos , Animais , Camundongos , RNA/metabolismo , Transdução de Sinais , Interferons/metabolismo , Encéfalo/metabolismo , Mutação/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
14.
Front Physiol ; 14: 1195001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324401

RESUMO

Introduction: Besides the ∼24-h circadian rhythms, ∼12-h ultradian rhythms of gene expression, metabolism and behaviors exist in animals ranging from crustaceans to mammals. Three major hypotheses were proposed on the origin and mechanisms of regulation of ∼12-h rhythms, namely, that they are not cell-autonomous and controlled by a combination of the circadian clock and environmental cues, that they are regulated by two anti-phase circadian transcription factors in a cell autonomous manner, or that they are established by a cell-autonomous ∼12-h oscillator. Methods: To distinguish among these possibilities, we performed a post hoc analysis of two high temporal resolution transcriptome dataset in animals and cells lacking the canonical circadian clock. Results: In both the liver of BMAL1 knockout mice and Drosophila S2 cells, we observed robust and prevalent ∼12-h rhythms of gene expression enriched in fundamental processes of mRNA and protein metabolism that show large convergence with those identified in wild-type mice liver. Bioinformatics analysis further predicted ELF1 and ATF6B as putative transcription factors regulating the ∼12-h rhythms of gene expression independently of the circadian clock in both fly and mice. Discussion: These findings provide additional evidence to support the existence of an evolutionarily conserved 12-h oscillator that controls ∼12-h rhythms of gene expression of protein and mRNA metabolism in multiple species.

15.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142338

RESUMO

BACKGROUND: In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS: We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS: TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS: Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Cromatina , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Fibroblastos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Fibrose , Bleomicina , Fatores de Transcrição/genética , RNA/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
16.
bioRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205336

RESUMO

Besides the ∼24-hour circadian rhythms, ∼12-hour ultradian rhythms of gene expression, metabolism and behaviors exist in animals ranging from crustaceans to mammals. Three major hypotheses were proposed on the origin and mechanisms of regulation of ∼12-hour rhythms, namely that they are not cell-autonomous and controlled by a combination of the circadian clock and environmental cues, that they are regulated by two anti-phase circadian transcriptional factors in a cell-autonomous manner, or that they are established by a cell-autonomous ∼12-hour oscillator. To distinguish among these possibilities, we performed a post-hoc analysis of two high temporal resolution transcriptome dataset in animals and cells lacking the canonical circadian clock. In both the liver of BMAL1 knockout mice and Drosophila S2 cells, we observed robust and prevalent ∼12-hour rhythms of gene expression enriched in fundamental processes of mRNA and protein metabolism that show large convergence with those identified in wild-type mice liver. Bioinformatics analysis further predicted ELF1 and ATF6B as putative transcription factors regulating the ∼12-hour rhythms of gene expression independently of the circadian clock in both fly and mice. These findings provide additional evidence to support the existence of an evolutionarily conserved 12-hour oscillator that controls ∼12-hour rhythms of gene expression of protein and mRNA metabolism in multiple species.

17.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37205600

RESUMO

While circadian rhythms are entrained to the once daily light-dark cycle of the sun, many marine organisms exhibit ~12h ultradian rhythms corresponding to the twice daily movement of the tides. Although human ancestors emerged from circatidal environment millions of years ago, direct evidence of ~12h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells and identified robust ~12h transcriptional rhythms from three healthy participants. Pathway analysis implicated ~12h rhythms in RNA and protein metabolism, with strong homology to the circatidal gene programs previously identified in Cnidarian marine species. We further observed ~12h rhythms of intron retention events of genes involved in MHC class I antigen presentation, synchronized to expression of mRNA splicing genes in all three participants. Gene regulatory network inference revealed XBP1, and GABP and KLF transcription factor family members as potential transcriptional regulators of human ~12h rhythms. These results suggest that human ~12h biological rhythms have a primordial evolutionary origin with important implications for human health and disease.

18.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G122-G134, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219012

RESUMO

Expression of transmembrane protein 16 A (TMEM16A), a calcium activated chloride channel, is elevated in some human cancers and impacts tumor cell proliferation, metastasis, and patient outcome. Evidence presented here uncovers a molecular synergy between TMEM16A and mechanistic/mammalian target of rapamycin (mTOR), a serine-threonine kinase that is known to promote cell survival and proliferation in cholangiocarcinoma (CCA), a lethal cancer of the secretory cells of bile ducts. Analysis of gene and protein expression in human CCA tissue and CCA cell line detected elevated TMEM16A expression and Cl- channel activity. The Cl- channel activity of TMEM16A impacted the actin cytoskeleton and the ability of cells to survive, proliferate, and migrate as revealed by pharmacological inhibition studies. The basal activity of mTOR, too, was elevated in the CCA cell line compared with the normal cholangiocytes. Molecular inhibition studies provided further evidence that TMEM16A and mTOR were each able to influence the regulation of the other's activity or expression respectively. Consistent with this reciprocal regulation, combined TMEM16A and mTOR inhibition produced a greater loss of CCA cell survival and migration than their individual inhibition alone. Together these data reveal that the aberrant TMEM16A expression and cooperation with mTOR contribute to a certain advantage in CCA.NEW & NOTEWORTHY This study points to the dysregulation of transmembrane protein 16 A (TMEM16A) expression and activity in cholangiocarcinoma (CCA), the inhibition of which has functional consequences. Dysregulated TMEM16A exerts an influence on the regulation of mechanistic/mammalian target of rapamycin (mTOR) activity. Moreover, the reciprocal regulation of TMEM16A by mTOR demonstrates a novel connection between these two protein families. These findings support a model in which TMEM16A intersects the mTOR pathway to regulate cell cytoskeleton, survival, proliferation, and migration in CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Sobrevivência Celular , Colangiocarcinoma/patologia , Transdução de Sinais , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Toxicol Appl Pharmacol ; 468: 116514, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061008

RESUMO

BACKGROUND & AIMS: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Cloreto de Vinil , Camundongos , Animais , Cloreto de Vinil/toxicidade , Cloreto de Vinil/metabolismo , Transcriptoma , Carcinoma Hepatocelular/patologia , Dieta Ocidental , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo
20.
Front Immunol ; 14: 1130288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999030

RESUMO

Introduction: Thromboinflammatory complications are well described sequalae of Coronavirus Disease 2019 (COVID-19), and there is evidence of both hyperreactive platelet and inflammatory neutrophil biology that contributes to the thromoinflammatory milieu. It has been demonstrated in other thromboinflammatory diseases that the circulating environment may affect cellular behavior, but what role this environment exerts on platelets and neutrophils in COVID-19 remains unknown. We tested the hypotheses that 1) plasma from COVID-19 patients can induce a prothrombotic platelet functional phenotype, and 2) contents released from platelets (platelet releasate) from COVID-19 patients can induce a proinflammatory neutrophil phenotype. Methods: We treated platelets with COVID-19 patient and disease control plasma, and measured their aggregation response to collagen and adhesion in a microfluidic parallel plate flow chamber coated with collagen and thromboplastin. We exposed healthy neutrophils to platelet releasate from COVID-19 patients and disease controls and measured neutrophil extracellular trap formation and performed RNA sequencing. Results: We found that COVID-19 patient plasma promoted auto-aggregation, thereby reducing response to further stimulation ex-vivo. Neither disease condition increased the number of platelets adhered to a collagen and thromboplastin coated parallel plate flow chamber, but both markedly reduced platelet size. COVID-19 patient platelet releasate increased myeloperoxidasedeoxyribonucleic acid complexes and induced changes to neutrophil gene expression. Discussion: Together these results suggest aspects of the soluble environment circulating platelets, and that the contents released from those neutrophil behavior independent of direct cellular contact.


Assuntos
Plaquetas , COVID-19 , Humanos , Plaquetas/metabolismo , Neutrófilos/metabolismo , COVID-19/metabolismo , Tromboplastina/metabolismo , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...